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Abstract

This report is part of a project in Deep Learn-
ing Applied AI at the University of Sapienza the
spring of 2022. The starting point was the paper
by (Frankle et al., 2020) where they investigated
the effects of training only batch normalization
layers on residual neural nets. In this project
similar experiments were conducted on MLP’s
of varying depth and a shallow CNN. The find-
ings largely concur with the general idea that the
affine parameters in batch normalization can be
more expressive than equivalent random weights
in the network. The code repository can be
found on Github: https://github.com/
Marcusntnu/mlp_lenet_bathnorm.

1. Introduction
BatchNorm normalizes according to the mean and standard
deviation on a mini-batch. In addition to the normalization,
the affine parameters of γ and β have also shown promis-
ing results in training more accurate models and being able
to reach non-trivial test accuracy when trained alone in
ResNets (Frankle et al., 2020). In this project we try try this
on MLP’s and a shallow CNN. Our dataset is the MNIST
dataset, chosen for its simpleness and lack of complexity
considering the scope of this project.

Models using layers approximately as wide as the input
layer (Wikipedia, 2022b) have been found to produce good
results (99%+) and this size (784 units) per layer was there-
fore the main width of interest. For this project we pro-
duced MLP’s ranging from 2 to 14 hidden layers, in inter-
vals of 2. Other widths (10, 20, 40, 80, 100, 400) were also
used in experiment producing similar results. Slimmer lay-
ers with size 10 and 100 still performed well (90%) when
training all parameters and we therefore compare these re-
sults with the wider (784 units) results.
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2. Related work
(Rosenfeld & Tsotsos, 2018) investigates training only a
subset of parameters and finds that it can achieve perfor-
mance on par with training all. This tells us that it should
not be surprising that a subset of random parameters can
perform non-trivially well.
We also see that BatchNorm can make it possible to train
deeper networks (He et al., 2015), that it makes the opti-
mization landscape significantly smoother which induces
a more predictive and stable behavior of the gradients,
allowing for faster training (Santurkar et al., 2018)
We are on the other hand interested in what (Frankle et al.,
2020) concludes which is that the affine parameters have
expressive power in neural networks and that this is done
through shifting and rescaling random features. In addition
this performance is said to be partly due to learning to
disable around a third of these random features.

3. Methodology
MLP’s: We train fully connected feed forward layers on
the MNIST dataset. MLP’s were of interest because of
their ubiquity and because they differ somewhat from con-
volutional neural networks while still being able to perform
similar tasks. LeNet CNN: The LeNet-5 CNN was one
of the earliest CNN’s proposed and are considered simple
(Wikipedia, 2022a). For our experiment we merely wanted
a shallower non-residual CNN for experimenting with in
this computationally resource limited project.

Hyperparameters: For BatchNorm we initialize β to 0
and sample γ uniformly between -1 and 1. Beta was de-
activated for the hidden layers. Random initializations are
done with the he-normal distribution. Batch sizes are also
set to 128 and the models are trained for 100 epochs with
early stopping at patience 3 epochs. Stochastic gradient de-
scent is used with learning rates set at 0.01. Momentum set
at 0.9 as done in (Frankle et al., 2020). Replicates: Exper-
iments shown are the mean of running models two times
with different random initializations.
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Figure 1. Test accuracy for MLP’s at varying depth when width
set at 10 units with different trainable parameters
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Figure 2. Test accuracy for MLP’s at varying depth when width
set at 100 units with different trainable parameters

4. Results
We see that when training all params the models benefit
from BatchNorm, especially at deeper levels. We also see
that training only BatchNorm yields non-trivial results and
consistently higher than by chance.

The experiments from the LeNet CNN showed test accu-
racy around 30% percent. Random weights did the same,
although slightly lower by a few (2-3) percent. The results
for MLP’s at varying depth and width are visualized in fig-
ures 1, 2 and 3.

Training on varying levels of depth for MLP’s showcases
that BatchNorm can reach non-trivial accuracy on MLP’s
too (above 90% for widths at 784) and also that the effect
scales with the amount of parameters, although more visi-
bly when scaling up width in this case rather than depth, but
this applies for all model configurations. On the MNIST
dataset training only BatchNorm on wide (784) and deeper
(4-14 hidden layers) MLP’s reach around (0.95%) accuracy
while an equivalent number of random parameters training
in the fully connected layers result in considerably lower
(more than 10% less) test accuracy by varying amounts.
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Figure 3. Test accuracy for MLP’s at varying depth when width
set at 784 units with different trainable parameters

5. Discussion
The results we get concur with research on other architec-
tures like ResNets from (Frankle et al., 2020). BatchNorm
and freezing all other parameters at their original initial-
izations can result in quite high accuracy also for MLP’s
through their power to shift and rescale random features.
Our conclusion, with some caveats, is that at larger dimen-
sions these affine features can perform better than train-
ing random weights in the network. Contrary to the deeper
ResNets (REF) trained only with BatchNorm, the benefit of
deeper models for more affine parameters seem to taper off
more in our experiment with BatchNorm stabilizing after
around four hidden layers.

The randomness and distribution of parameters are still
somewhat up for discussion. We did not find that the ran-
dom or non-random distribution in a single layer mattered
for performance, as was the case with ResNets for (Frankle
et al., 2020). We chose to have random parameters evenly
distributed in the model (the same in each layer) because
the BatchNorms parameters were, but this is not necessar-
ily the most optimal configuration for random parameters.
We not know if uneven distribution among layers in the
MLP model can affect performance.

Further work could include other architectures, possibly
transformer based architectures or those operating on non-
euclidean data, like GNN’s. Hyperparametrization is not
explored in this report, although we did to some tuning and
include this in our delivered notebooks. It would be es-
pecially interesting to combine batch sizing, further width
tuning of layers, other random initialization distributions,
non-standard learning rates etc. In addition, if affine pa-
rameters are of interest it could be interesting to look at
them isolated and not in conjunction with normalization,
so to replace the BatchNorm layer with another function
instead of comparing it only to units in the previous layer.
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