
Machine Learning Project-2: Finding meaning in autogenerated text

Erik Börve, Gonçalo Gomes, Marcus Henriksbø
erik.borve@epfl.ch, goncalo.cavacogomes@epfl.ch marcus.henriksboe@epfl.ch

Department of Computer Science, EPFL, Switzerland

ABSTRACT

Understanding the intent of spoken utterances can be a
difficult task, not only for humans on occasions, but even more
so for computers. In this project we aim at doing to later
by implementing a pipeline that combines automatic speech
recognition (ASR) and natural language processing (NLP) with
the concepts that where introduced during the course. Utilizing
different ASR and NLP techniques we where able to construct
suitable feature spaces from labeled audio files that could be
used to train classifiers and identify the intent of the user. Using
a TF-IDF embedding with the Wave2vec ASR and logistic
regression resulted in a correct intent classification with ∼ 87%

accuracy.

I. INTRODUCTION

The subject of spoken language understanding (SLU)
concerns extracting meaning from some spoken utterance.
As one can assume, a large application within this field is for
different voice assistance that aim to convert some spoken
user query to a certain action. This is a task consisting
of multiple parts. The first, and perhaps largest part, is to
extract the intent of the user. This can be illustrated using
the following example sentence “Activate all the lights in
the entire house”, which corresponds to the user action
“SwitchLightOn”. However, one can also distinguish that the
full intent of this sentence is more nuanced and for example
also specifies the location of the lights in question. Hence,
performing intent classification is no arbitrary task.
Considering the whole pipeline, translating the audio signal
to text requires the use of some automatic speech recognition
algorithm (ASR). This process will introduce some word
error rate (WER) which further complicates the classification
problem. This process applied to the previous example
sentence can be illustrate as seen below in figure 1. In
this case the used ASR algorithm was the TDNNF-LFMMI
model which resulted in the translation “w. lights in the in
her house” with a WER = 0.625.
As seen in this example a high WER can significantly distort
the ground truth sentence which naturally results in a more
challenging classification problem. To successfully identify
the intent of the user it is hence vital construct an intent
classification pipeline that, not only minimizes the WER, but
also is robust to different WER. The focus of this project
is hence, not only to find a well performing classifier for
this task, but also to investigate the impact of WER by

Figure 1: Illustration of classification problem.

performing classification on both ground truth and ASR
sentences. This was accomplished by applying a range of
natural language processing (NLP) and machine learning
(ML) techniques which are detailed further in the following
sections.

II. DATA ANALYSIS AND PROCESSING

The data that was used in this project consisted of 1660
audio files with corresponding ground truth transcripts and
labels. Each transcript corresponded to a single sentence of
some length and the corresponding label was a member of
a set of 6 different actions. The exact content is described
further in the paper “Spoken Language Understanding on
the Edge by SNIPS [1].

A. Preprocessing

To improve the performance of the different text embed-
ding methods different common NLP methods where tested
and applied. First, all uppercase and special characters where
either replaced or removed. Each sentence could then be
tokenized into unigrams. Further, methods utilizing lemma-
tization and removing stopwords was studied. The idea of
lemmatization is to reduce certain words to a common stem,
e.g goes→go and the idea of removing stopwords is to
remove some words if they exists in some predefined set of
common words [2]. A visualization of the impact of applying
these methods to the previous example sentence can be seen
in the figure 2.

However, as can be noted in the displayed example some
subtle meanings can be removed in this process. One should
therefore note that e.g removing stopwords also could have a

Figure 2: Illustration of the text pre-processing process.

negative impact on the classification performance and should
be used sparingly.

B. Text embedding

Since each feature initial consist of an array of strings it is
necessary to first represent these in a format that is suitable
for a classification algorithm. Selecting the most appropriate
method to obtain an appropriate text representation is a large
field within NLP and in this case 3 conceptually different
methods where studied.
As an initial approach the more simple Term frequency-
Inverse Document Frequency (TF-IDF) method was studied.
This approach weights the amount of times a word appears
in a sentence with the length of the sentence, as well as
taking into account how many times this word is present
through out the entire corpus. For a token i in a sentence j
this is hence expressed as,

XTF-IDF
i,j =

Nr of i in j

Total tokens in j
log

(
Nr of sentences

Nr of sentences containing i

)
This results in a vector for each sentence where each entry
corresponds the TF-IDF embedding of each unique word
in the corpus. Hence, for a corpus with N sentences and
n unique words the feature space will be of size (N × n).
Depending on the variance of used words this usually results
in a quite spares space. Additionally, since this method only
takes into account different frequencies there is no semantic
or contextual information that is being preserved [3].
On the other hand utilizing the Word2vec (W2V) text embed-
ding we are able to capture the semantic meaning of words
in the corpus. This is done by training a neural network
to predict the context that a certain word will appear in,
as outlined in “Distributed Representations of Words and
Phrases and their Compositionality” by Mikalov.T. et al [4].
Each word in the corpus can then be represented by some
n-dimensional vector, for which the euclidean norm will be
similar for words that appear in a similar context. Since
the text representation is trained based on the context this
representation will have some form of semantic meaning
(e.g the vector representation of “dog” will ideally have a

small euclidean distance to “cat”). Further, by summing the
Word2vec representation of over each word in a sentence,
it is possible to express each utterance as a single vector of
size n,

XW2V
j =

Ij∑
i=1

XW2V
i

Ij

where Ij is the number of words in each sentence j.
In addition,since the corpus of this data set is relatively
small we opted to use pre-trained models. In this case the
“gigaword-100” model was used which is trained on the
corpus of Wikipedia and returns a 100-dimensional vector
representation of each word.
Lastly, to investigate the impact of a text embedding with
conceptual meaning, we applied the BERT-model (Bidirec-
tional Encoder Representations from Transformers) which is
formally outlined in the paper “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”
by Delvin J. et al [5]. All though this method relies heavliy
on recurrent neural networkds,which can be considered to
be outside of the scope of this course, the fundamental
difference between the BERT embedding and the W2V
embedding is that the W2v variant will generate a fixed
embedding for each token regardless of its contextual mean-
ing. Using BERT e.g the word “fair” can have a different
encoding depending on if its used in a transcript from a court
of law or on a cosmetics product.

C. Automatic Speech Recognition

The purpose of an ASR algorithm is to convert some audio
file to a corresponding text transcript with an as low WER as
possible. For this project 2 different methods where studied.
These text transcripts where then similarly process by one
of the different text embedding models to generate a feature
for each transcript.
The first and relatively less involved model was the TDNNF-
LFMMI model which combines the “TDNNF” model devel-
oped in “Semi-Orthogonal Low-Rank Matrix Factorization
for Deep Neural Networks” by Povey D et al and the
“LFMMI” model developed in “Multitask adaptation with
Lattice-Free MMI for multi-genre speech recognition of low
resource languages ” by Motlicek .P et al [6], [7]. These
models utilize deep neural network concepts which are out
of the scope of this course and an accurate description is
available in the above articles.
The second and more involved studied model was the
“Wave2Vec-U”-model which utilizes generative adversarial
neural networks (GAN) for training and is hence unsuper-
vised. The exact algorithm however, can again be consid-
ered to be outside the scope of this course but a detailed
description is available in the paper “Unsupervised Speech
Recognition” by Baevski A et al [8].

D. Feature augmentation

Before performing the classification task the available
data was augmented in an attempt to mitigate any potential
bias and improve the prediction performance. Utilizing the
3 different text embedding methods resulted in a feature
space X of dimension (N × n) where in the TF-IDF case
n = “Nr. unique words in data set”,W2V n = 100 and
Bert n = 768. As an initial approach the Bert and W2V
features where standardized to have zero mean and the TF-
IDF features where normalized.
After doing the speech recognition, we notice that there
were some deviations from the true words in the sentences
produced by the automatic speech recognition engine (e.g:
ight istead of light). We were concerned if this deviation
would affect the natural language processing techniques in
producing a congruent feature space, especially for text
embeddings that tacked into account the contextual and
semantic similarity of the words to produce the feature
space such BERT and Word2Vec. In an attempt to mitigate
this issue and at the same time reduce the WER, an auto
correction algorithm was introduced. The auto correction
was performed by first creating a dictionary “(Dg)” contain-
ing all tokens “(t)” in the ground truth. Using the Jaccard
similarity (J) between each token in the ASR transcript
“Aij” and each word in the ground truth dictionary Dg(t)
it was then possible to get some metric of their character
based similarity. This was computed as,

J(Ai,j , Dg(t)) =
|Ai,j ∩Dg(t)|
|Ai,j ∪Dg(t)|

=
“Nr. of similar characters”

“Total Nr. of characters”

Maximizing J(A,Dg) then gave the most similar token
of the ground truth which could be used to replace its
misspelled version in the ASR transcript.
These auto corrected sentences was then similarly feed to
the corresponding text embedder and processed exactly as
mentioned previously.

III. METHOD

As outlined in “Text Classification Algorithms: A Survey”
by Kamran Kowsari et al some of the most popular algo-
rithms for performing classification include support vector
machines (SVM), Naive Bayes (NB) and different versions
of recurrent neural networks (RNN) such as “long short term
memory” (LSTM) [9]. As RNNs where out of the scope of
this course we opted for a more simple feed forward neural
network. In summary the studied methods where:

• Logistic regression
As suggested in the above article this was a suitable
linear classifier.

• Naive Bayes
For the NB classifier we decided on the Gaussian Naive
Bayes version, as this supported the negative values
produced by our Word2Vec text embedding.

• SVM
The kernel used was the standard method in the sklearn
library, the ”radial basis function” (RDF). RDF was
since it has been shown to hold higher predicive ability
than a linear kernel in some cases [10].

• Neural networks
For tuning the parameters, in this case the hidden layers
and neurons, iterations in the interval (40*n, 20*m) was
tried with n and m ranging from 0 to 25, following the
framework presented by Heaton Research [11].

IV. RESULT

The main results regarding both classifying intent and
the impact of WER in ASR are described below. The
presented accuracy measurements displayed in tables I,II and
III where computed as an average over 100 iterations with a
90/10 train/test split being shuffled each iteration. The best
classifier respective of each text embedding technique is in
bold.

A. Ground truth transcripts

Utilizing the existing transcribed data (i,e WER = 0)
we found the performance in classifying intent for different
chosen text embeddings and classifiers as shown in table I.

Table I: Results for text embedding and classification on
ground truth data.

Logistic
Regression SVM MLP

(400, 100)
Gaussian
Naive Bayes

TF-IDF 0.95 0.96 0.95 0.77
W2V 0.90 0.84 0.92 0.73
BERT 0.93 0.87 0.91 0.60

For TF-IDF we found the SVM classifier provided the best
accuracy overall. The three highest scoring combinations
of text embedding and classifier were TF-IDF using SVM,
W2V using MLP and Bert using Logistic regression.

B. ASR transcripts

Similarly, performing the same analysis for the ASR
transcriptions gave the results shown below in tables II and
III. Table II shows the results using the TDNNF-LFMMI
model (WER = 0.56) and table III shows the results using
the Wave2vec model (WER = 0.36).

Table II: Results for text embedding and classification on
TDNNF-LFMMI transcripts.

Logistic
Regression SVM MLP

(400, 100)
Gaussian
Naive Bayes

TF-IDF 0.6815 0.6775 0.63 0.48
W2V 0.57 0.53 0.58 0.45
BERT 0.6 0.4 0.49 0.39

Table III: Results for text embedding and classification on
Wave2vec transcripts.

Logistic
Regression SVM MLP

(400, 100)
Gaussian
Naive Bayes

TF-IDF 0.83 0.86 0.84 0.64
W2V 0.79 0.76 0.77 0.586
BERT 0.78 0.72 0.76 0.54

We clearly see the ground truth data performing better
than the ASR transcribed data, as expected. The score
difference between the two ASR also deviate quite strongly,
where we see the Wave2Vec performing considerably better.

With the word error rate in mind, we see that the
Wave2Vec, performing better on WER also leads to higher
accuracy on all the combinations of text embedding and
classifiers.

As seen in table IV we have better score results in
general for BERT and Word2Vec text embeddings using the
autocorrection. As mention before the main reason for this
is that both of this NLP techniques have in consideration
the meaning and semantic similarity of the words so even
the slightest semantic deviation of the keywords in the ASR
transcript could change completely the entire meaning of the
sentence and for that reason this models preformed better
after mitigating this issue.

We also calculated the WER on the autocorrected data
relative to the ground truth data in order to try to have a
sense of how well the data was translated, we see that it
yielded a score of 0.32, meaning the autocorrected version
was 0.04 more accurate than that without.

Table IV: Results for text embedding and classification on
Wave2Vec transcripts with autocorrection.

Logistic
Regression SVM MLP

(400, 100)
Gaussian
Naive Bayes

TF-IDF 0.78 0.87 0.81 0.68
W2V 0.82 0.77 0.79 0.58
BERT 0.81 0.76 0.79 0.60

Looking at the confusing matrix for the different best
performing classifiers and text embedding combinations it
was possible to analyze the trends in miss-classification.Here
figure 3 displays the confusion matrix for TF-IDF using
SVM corresponding to the best performing classifier. Addi-
tionally, Appendix I displays this same figure for a plethora
of combinations. Considering all of these figures it was not
possible to distinguish any clear trend in different classes
being more difficult to identify.

C. Hyper-parameter Tunning

We tuned the models that were giving us the best results
for each NLP technique, in order to try achieve maximum

Figure 3: Confusion matrix for TF-IDF and SVM classifier,
without the autocorrected dataset.

accuracy scores for both the train/test ASR data with and
without autocorrection. The values are present in table V

Table V: Accuracies and tunned hyperparameters (HP) of
the best models for the ASR data with and without autocor-
rection.

No Autocorrection Autocorrection
HP Accuracy HP Accuracy

TFIDF - SVM C = 2.78
degree = 3 0.87 C = 1

degree = 3 0.87

WORD2VEC - LGR C = 0.06 0.79 C = 0.16 0.82
BERT - LGR C = 0.53 0.78 C = 0.6 0.83

V. CONCLUSION

According with the results presented above, we can see
that TFIDF is the NLP technique that is giving the best
accuracy’s in general. This might at first be a surprise since it
is the simplest text embedding out of the 3. Initially, it would
be expected that since it doesn’t take into consideration the
semantic or contextual meaning of the sentences, this lack
of information would be seen as a disadvantage for TFIDF’s
classification task compared to Word2Vec or BERT, but turns
out that this is not the case at all. A reason for it could be
the fact that for the ground truth data, the sentences are very
similar to each other and for that reason, there is no big
advantage to try get information in the meaning or semantic
similarity in the sentences to help in the predictions. In
addition, to that for the ASR transcripts, the sentences suffer
a deviation from the ground truth, influencing the semantic
and meaning of the sentence in general, making it difficult
to try get information from it.
Regarding the WER it would seem that a lower value in
general gives a better performing classifier. However, since
it is more important to accurately transcribe the keywords
then some other words this metric can be considered to be
somewhat misleading. A further investigation could be to
identify the keywords of each sentence and calculate the
WER solely for these words.

REFERENCES

[1] A. S. . et al, “Spoken language understanding on the edge,”
2019. [Online]. Available: https://arxiv.org/pdf/1810.12735.
pdf

[2] D. K. . et al, “An interpretation of lemmatization
and stemming in natural language processing,” 2021.
[Online]. Available: https://www.researchgate.net/publication/
348306833 An Interpretation of Lemmatization and
Stemming in Natural Language Processing

[3] J. Ramos, “Using tf-idf to determine word rele-
vance in document queries,” 2003. [Online]. Avail-
able: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.121.1424&rep=rep1&type=pdf

[4] T. M. . et al, “Distributed representations of
words and phrases and their compositionality,” 2013.
[Online]. Available: https://proceedings.neurips.cc/paper/
2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[5] J. D. . et al, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” 2019. [Online].
Available: https://arxiv.org/pdf/1810.04805.pdf

[6] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmo-
hammadi, and S. Khudanpur, “Semi-orthogonal low-rank
matrix factorization for deep neural networks,” Interspeech,
pp. 3743–3747, 2018.

[7] S. Madikeri, P. Motlicek, and H. Bourlard, “Multitask adapta-
tion with lattice-free mmi for multi-genre speech recognition
of low resource languages,” Interspeech 2021, pp. 4329–4333,
1998.

[8] A. Baevski, W.-N. Hsu, A. Conneau, and M. Auli,
“Unsupervised speech recognition,” NeurIPS, 2021. [Online].
Available: https://arxiv.org/pdf/2105.11084.pdf

[9] K. K. . et al, “Text classification algorithms: A survey,”
Information, 2019. [Online]. Available: https://arxiv.org/pdf/
1904.08067.pdf

[10] S. S. Keerthi and C.-J. Lin, “Basymptotic behaviors of
support vector machines with gaussian kernel,” 2003.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.141.880&rep=rep1&type=pdf

[11] H. Research, “Choosing number of neurons and
hidden layers,” 2017. [Online]. Available: https:
//www.heatonresearch.com/2017/06/01/hidden-layers.html

APPENDIX I

This appendix displays additional plots of confusion
matrices for more combinations of classifiers,text embed-
ders and datasets. All ASR transcripts where created using
Wave2Vec.

Figure A1: Confusion matrix for TF-IDF and SVM classifier,
without the autocorrected dataset.

Figure A2: Confusion matrix for TF-IDF and SVM classifier,
with the ground truth data.

Figure A3: Confusion matrix for W2V and LGR classifier,
with the autocorrection of ASR.

https://arxiv.org/pdf/1810.12735.pdf
https://arxiv.org/pdf/1810.12735.pdf
https://www.researchgate.net/publication/348306833_An_Interpretation_of_Lemmatization_and_Stemming_in_Natural_Language_Processing
https://www.researchgate.net/publication/348306833_An_Interpretation_of_Lemmatization_and_Stemming_in_Natural_Language_Processing
https://www.researchgate.net/publication/348306833_An_Interpretation_of_Lemmatization_and_Stemming_in_Natural_Language_Processing
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2105.11084.pdf
https://arxiv.org/pdf/1904.08067.pdf
https://arxiv.org/pdf/1904.08067.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.880&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.880&rep=rep1&type=pdf
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html

Figure A4: Confusion matrix for W2V and LGR classifier,
without the autocorrection of ASR.

Figure A5: Confusion matrix for W2V and LGR classifier
using the ground truth data.

Figure A6: Confusion matrix for BERT and LGR classifier,
with the autocorrection of ASR.

Figure A7: Confusion matrix for BERT and LGR classifier,
without the autocorrection of ASR.

Figure A8: Confusion matrix for BERT and LGR classifier
using ground truth data.

	Introduction
	Data analysis and Processing
	Preprocessing
	Text embedding
	Automatic Speech Recognition
	Feature augmentation

	Method
	Result
	Ground truth transcripts
	ASR transcripts
	Hyper-parameter Tunning

	Conclusion
	References

